

Solution

Extreme Points of $\sin(x) - \cos(x)$, $0 \le x \le 2\pi$: Maximum $\left(\frac{3\pi}{4}, \sqrt{2}\right)$, Minimum $\left(\frac{7\pi}{4}, -\sqrt{2}\right)$ Steps First Derivative Test definition Suppose that x = c is a critical point of f(x) then, If f'(x) > 0 to the left of x = c and f'(x) < 0 to the right of x = c then x = c is a local maximum. If f'(x) < 0 to the left of x = c and f'(x) > 0 to the right of x = c then x = c is a local minimum. If f'(x) is the same sign on both sides of x = c then x = c is neither a local maximum nor a local minimum. Hide Steps 🖨 Find the critical points: $x = \frac{3\pi}{4}, x = \frac{7\pi}{4}$ Critical point definition Critical points are points where the function is defined and its derivative is zero or undefined Find where f'(x) is equal to zero or undefined Hide Steps $f'(x) = \cos(x) + \sin(x)$ $\frac{d}{dx}(\sin(x) - \cos(x))$ Apply the Sum/Difference Rule: $(f \pm g)' = f' \pm g'$ $=\frac{d}{dx}(\sin(x))-\frac{d}{dx}(\cos(x))$ Hide Steps $\frac{d}{dx}(\sin(x)) = \cos(x)$ $\frac{d}{dx}(\sin(x))$ Apply the common derivative: $\frac{d}{dx}(\sin(x)) = \cos(x)$ $=\cos(x)$ Hide Steps 🖨 $\frac{d}{dx}(\cos(x)) = -\sin(x)$ $\frac{d}{dx}(\cos(x))$ Apply the common derivative: $\frac{d}{dx}(\cos(x)) = -\sin(x)$ $= -\sin(x)$ $=\cos(x)-(-\sin(x))$ Factor $=\cos(x)+\sin(x)$ Hide Steps 🖨 Solve $\cos(x) + \sin(x) = 0$: $x = \frac{3\pi}{4}, x = \frac{7\pi}{4}$ $\cos(x) + \sin(x) = 0, 0 < x < 2\pi$ Divide both sides by cos(x), $cos(x) \neq 0$ $\frac{\cos(x) + \sin(x)}{\cos(x)} = \frac{0}{\cos(x)}$ Refine $\frac{\sin(x)}{\cos(x)} + 1 = 0$

Use the following identity: $\frac{\sin(x)}{\cos(x)} = \tan(x)$

 $\tan(x) + 1 = 0$

Subtract 1 from both sides

 $\tan(x) + 1 - 1 = 0 - 1$

Simplify

$$\tan(x) = -1$$

General solutions for tan(x) = -1

$$x = \frac{3\pi}{4} + \pi n$$

$$x = \frac{3\pi}{4} + \pi n$$

Solutions for the range $0 \le x \le 2\pi$

$$x = \frac{3\pi}{4}, x = \frac{7\pi}{4}$$

$$x = \frac{3\pi}{4}, x = \frac{7\pi}{4}$$

Identify critical points not in f(x) domain

Domain of $\sin(x) - \cos(x)$, $0 \le x \le 2\pi$: $0 \le x \le 2\pi$

Hide Steps

Domain definition

The domain of a function is the set of input or argument values for which the function is real and defined

Set the domain to the given interval

 $0 \le x \le 2\pi$

The function has no undefined points nor domain constraints. Therefore, the domain is

 $0 \le x \le 2\pi$

All critical points are in domain

$$x = \frac{3\pi}{4}, x = \frac{7\pi}{4}$$

Domain of $\sin(x) - \cos(x)$, $0 \le x \le 2\pi$: $0 \le x \le 2\pi$

Hide Steps 🖨

Domain definition

The domain of a function is the set of input or argument values for which the function is real and defined

Set the domain to the given interval

 $0 \le x \le 2\pi$

The function has no undefined points nor domain constraints. Therefore, the domain is

 $0 \le x \le 2\pi$

Combine the critical point(s): $x = \frac{3\pi}{4}$, $x = \frac{7\pi}{4}$ with the domain

The function monotone intervals are:

$$0 \le x < \frac{3\pi}{4}, \frac{3\pi}{4} < x < \frac{7\pi}{4}, \frac{7\pi}{4} < x \le 2\pi$$

Check the sign of $f'(x) = \cos(x) + \sin(x)$ at each monotone interval

Check the sign of $\cos(x) + \sin(x)$ at $0 \le x < \frac{3\pi}{4}$: Positive

Hide Steps

Evaluate the derivative at a point on the interval. Take the point x = 1 and plug it into $\cos(x) + \sin(x)$

cos(1) + sin(1)

Simplify $\sin(1) + \cos(1)$

Refine to a decimal form

1.38177...

Positive

Check the sign of $\cos(x)+\sin(x)$ at $\frac{3\pi}{4} < x < \frac{7\pi}{4}$: Negative

Hide Steps 🖨

Evaluate the derivative at a point on the interval. Take the point x=4 and plug it into $\cos(x)+\sin(x)$

 $\cos(4) + \sin(4)$

Simplify

 $\sin(4) + \cos(4)$

Refine to a decimal form

-1.41045...

Negative

Check the sign of $\cos(x) + \sin(x)$ at $\frac{7\pi}{4} < x \le 2\pi$: Positive

Hide Steps

Evaluate the derivative at a point on the interval. Take the point x=6 and plug it into $\cos(x)+\sin(x)$

 $\cos(6) + \sin(6)$

Simplify

 $\sin(6) + \cos(6)$

Refine to a decimal form

0.68075...

Positive

Summary of the monotone intervals behavior

	$0 \le x < \frac{3\pi}{4}$	$x = \frac{3\pi}{4}$	$\frac{3\pi}{4} < x < \frac{7\pi}{4}$	$x = \frac{7\pi}{4}$	$\frac{7\pi}{4} < x \le 2\pi$
Sign	+	0		0	+
Behavior	Increasing	Maximum	Decreasing	Minimum	Increasing

Plug the extreme point $x=\frac{3\pi}{4}$ into $\sin(x)-\cos(x) \quad \Rightarrow \quad y=\sqrt{2}$

Maximum $\left(\frac{3\pi}{4}, \sqrt{2}\right)$

Plug the extreme point $x=\frac{7\pi}{4}$ into $\sin(x)-\cos(x) \quad \Rightarrow \quad y=-\sqrt{2}$

Minimum $\left(\frac{7\pi}{4}, -\sqrt{2}\right)$

 $\operatorname{Maximum}\Bigl(\dfrac{3\pi}{4},\sqrt{2}\,\Bigr), \operatorname{Minimum}\Bigl(\dfrac{7\pi}{4},\,-\sqrt{2}\,\Bigr)$

Graph

